SRNL Membrane Research

Thad Adams, Paul Korinko, Marie Kane Savannah River National Laboratory Aiken, SC

PURIWG Nov. 7, 2007

Membrane Separation Technology and Economic Needs

- Low cost separation technology
- Lower cost capital investment than Pd
- Efficient removal of impurities
 - CO, CO₂, N₂ CH₄, H₂O, S, and ash & tar
 - Purity dependant on end use
 - 99-99.99%
 - Multiple stages optional
 - Adds cost

Cost Factors—Distributed Steam-Methane Reformer Natural Gas at 1500 kg H₂/day

Cost Factor	2005	2010 Target for \$1.50/Kg H ₂	% Change from 2005
Capital Costs (\$MM)	\$3.2	\$1.4	-56%
Non-Feedstock O&M Costs (\$/kg)	\$0.80	\$0.48	-40%
Energy Efficiency (%)	65%	75%	+16%

Membrane Technologies Required

- High flux
- Low pressure drop
- High contaminant tolerance
 - S, CO, solids, etc.
- Low cost
- Moderate operating temperature
 - -250-600°C

- Types of membrane separation
 - Molecular
 - Atomic
 - lonic
- Manufacturability
 - Joining
 - Design
 - Heating

Molecular Membranes

Porous media

- Physical size separation
 - $\Phi_{H2} = 2.89 \text{ Å}$
- Small pore ceramics, metals, etc. Φ_{Holes} = 10 Å
 - Zeolites, SiC, SiO₂, Al₂O₃, metals
- Mean free path dependant
- Flux α P_{H2}
- 99% purity achievable

Atomic Membranes

- Dense metallic membrane
 - Thin metal sheets / tubes
 - Active surfaces
 - Dissociates H₂
 - H diffuses
 - H recombines to H₂₊
 - May need supports
 - Porous metals
 - May be poisoned
 - CO, S, etc

- Dense metallic membrane (cont)
 - Not thermally stable
 - High temp phase change
 - Low temp hydriding
 - No long range order possible
 - Flux $\alpha \sqrt{P_{H2}}$
 - High purity possible > 99.99%

Metallic Membrane Hydrogen Purification

Proton Transport

- Protons and electrons transported separately
 - Single or dual phase materials
 - Mixed conductor materials
 - Ceramic oxides
 - High temp (>800°C)
 - Flux currently lower than target
 - Cermet
 - Ceramic and metal composite
 - Higher electron flow and proton flow
 - May use separate membranes
 - Flux α fn(e⁻ & p⁺ conductivities)
 - Flux α **l**n (P_{H2}, T)

H₂ Membrane Targets

Table 2. Technical Targets: Dense Metallic Membranes for Hydrogen Separation and Purification					
Performance Criteria ^a	Units	Calendar Yea 2003 Status ^b	r 2005 Target	2010 Target	2015 Target
Flux ^c	scfh/ft ²	60	100	200	300
Membrane Material and All Module Costs ^d	\$/ft ² of membrane	\$2,000	\$1,500	\$1,000	<\$500
Durability	Years ^e	<1 ^f	1	3	>5
ΔP Operating Capability ^g	psi	100	200	400	400-1,000
Hydrogen Recovery	% of total gas	60	>70	>80	>90
Hydrogen Purity ^h	% of total (dry) gas	>99.9	>99.9	>99.95	99.99%

H₂ Membrane Targets

Table 3. Technical Targets: Microporous Membranes for Hydrogen Separation and Purification					
Performance Criteria ^a	Units	2003 Status	2005 Target	2010 ^b Target	2015 ^b Target
Flux ^c	scfh/ft ²	100	100	200	300
Membrane Material and All Module Costs ^d	\$/ft ² of membrane	\$450-\$600	\$400	\$200	<\$100
Durability	Years ^e	<1 ^f	1	3	>5
ΔP Operating Capability ^g	psi	100	200	400	400-1000
Hydrogen Recovery	% of total gas	60	>70	>80	>90
Hydrogen Purity ^h	% of total (dry) gas	>90%	95%	99.5%	99.99%

SRNL Plan

- Investigate non-precious metal membrane materials
 - High H₂ solubility (S)
 - High H₂ diffusivity (D)
 - High Permeability ($\Phi = D*S$)
- Bulk amorphous metals
 - Bulk metallic glasses (BMG)
 - Commercially available
 - Low cost
 - Dense metallic membranes

SRNL Plan Needs Addressed

- Durability
- Impurity
- Membrane defects
- H₂ selectivity
- Operating temperature
- Flux
- Testing and analysis
- Cost

Membrane Design Targets

- Flux rate 250 scfh/ft² (76.2 m³ / h / m²)
- Module cost \$1000 / ft² (\$10840 / m²)
- Durability 26,280 hours (3 years)
- Operating pressure 400 psi (27 atm)
- Recovery > 80% H₂
- H₂ quality 99.99%

FY06 Accomplishments

- Electrochemical cell H₂ testing
 - Test method ASTM G148
 - Materials tested
 - Four Metglass samples
 - Results
 - Breakthrough not detected after 8 hours
 - Technique verified using Pd
 - Breakthrough < 10 s at RT
 - Screening method only

Experimental Equipment Gas Permeation

- Modular design
- Vacuum system
 - Dry scroll pumps
 - Edwards
 - Turbo-Molecular pump
 - 10⁻⁶ Torr capability
 - All metal seals
 - 10 solenoid controlled valves
 - Pressure control valve
 - Manual metering valve
 - Up to 1 atm pressure

- 3 capacitance manometers
 - Multiple ranges
 - 4 decades each range
- 5 Pirani gauges
 - 75 Torr .75 mTorr
- 2 ion gauges
 - Lower and upper chamber
- 2 Mass Spectrometers
 - 2 48 AMU
 - 10 mTorr Max. operating P
- Tube Furnace
 - Custom three zone
 - Independent heating control
 - 1000°C maximum
 - Screw drive mounting

FY06 Accomplishments

- H₂ gaseous testing
 - Low pressure (P<760 Torr)
 - Temperature 300-400°C
 - Mechanically sealed disks
- Permeation fluxes within two decades of Pd alloys

Other SRNL Programs

- Tested V-Ni-Ti alloys as dense metallic membranes
 - Complex microstructure
 - Comparable H₂ permeability to Pd
 - Poor durability during cycle 250°C to RT
 - Forms Hydride

Why Ni-Ti-Group 5A Alloys?

Pd/Pd-Alloy Membranes

- •Pd and Pd-Alloys posses good solubility and diffusion characteristics
- •Permeation through Pd is on the order of 10-9 10-8 mol H₂/m s Pa^{1/2}
- •Embrittlement of Pd limits longevity, Pd-alloys (Cu,Ag) Reduce Susceptibility to Poisoning and Embrittlement
- •Pd/Pd-Alloys High Cost

Alternatives to Pd/Pd Alloys Membranes

- Pd-Coated Porous Ceramics
 - Pin-holes/Holidays Create Short Circuit Pathways
- •LANL Investigating V and V-alloys
- Japanese Investigating V-Al and V-Ni
 - •V has high solubility and diffusivity but suffers severely from embrittlement
 - •Attempts at Alloying V have not made significant decrease in embrittlement susceptibility
- •Group 5A-Ti-Ni Alloys
 - •Ni-Ti alloys have been researched for decades due to their shape memory properties
 - •NI-Ti Alloys are susceptible to H₂ Embrittlement and Do Not Posses High Permeability
 - •Additions of Group 5A Metals (Nb, V, and Ta)
 - •Nb Additions have produced high permeation and good resistance to embrittlement
 - •Duplex Structure—Ni₄Ti₁₃Nb₈₃ and Eutectic
- •Further Work to Optimize Volume Fraction of Ni₄Ti₁₃Nb₈₃ (high diffusivity phase)
- •Explore Other Group 5A Additions—i.e., V to promote $Ni_x Ti_y V_{(1-x+y)}$ Phase

Results

Scanning Electron Microscopy

Nb51-Ti28-Ni21

Nb48-Ti28-Ni24

V51-Ti28-Ni21

Electrolytic Permeation Results

<u>Material</u> <u>Permeation Rate (mol H₂/m s)</u>

Palladium 3.26-4.25 x 10⁻¹⁰

Nb48 Alloy 6.58 x 10⁻¹¹ - 1.65 x 10⁻¹⁰

Nb51 Alloy $2.96 \times 10^{-10} - 6.0 \times 10^{-9}$

Nb54 Alloy 3.25 x 10⁻¹⁰

V51 Alloy 1.0- 3.7 x 10⁻⁹

Results—V48-Ti28-Ni24 Alloy

Test Conditions

•Temperature: 400°C
•H2 Pressure: 700T

•Thickness: 0.089cm (0.035in)

•SA:≅ 5 cm²

V48-Ti28-Ni24 Permeation Test

Determine Permeability at Steady-State

- •Slope of Saturation Data= Torr/hr—convert to mols H₂/min
- •Flux (J)= K/I (P_{feed} 1/2)
- •Flux (J)= (Sat Slope (mols H₂/min)/Area Permeating (m²)) = mols H₂/min m²
- •I=m and P_{feed}=Pascals and Solve for K=Permeability (mols H₂/m s Pa^{1/2})
- •For V48-Ti28-Ni24 Permeability = 1.0 x 10^{-9} mols H₂/m s Pa^{1/2}

Results—V48-Ti28-Ni24 Alloy

FY07 Tasks

Test low cost BMG

- Zr-Cu-Ni-Al-Y
- Fe and Co based MetGlass
- H₂ permeability
 - ASTM G148-97 Electrochemical Method
 - Gas permeation

Develop sealing technology

- Mechanical
- Soldering
- Welding

FY07 Accomplishments MetGlass Samples

Mechanical Sealing

- Leak rates lower than 10⁻⁷ sccm He / s
- VCR type fitting

 Alloy 	Tests	Number successful	
1	6	3	
2	4	3	damaged 1 membrane
3	4	4	
4	4	1	1 damaged

- Small sample diameter
- Sample thickness may experience cutting

BMG Raw Results

FY07 Accomplishments

Brazing / Soldering

- Methods
 - Induction in Ar
 - Vacuum furnace
- Issues
 - Devitrification temperature below common braze alloys
 - Reactive alloys oxidize to inhibit wetting
 - Sample thickness may require backing plate

MetGlass Membrane Cost

Alloy	1 kg price (As Cast)	mols/m ² /s/\$
■ 2605S3A	\$ 436	
■ 2826MB3	\$ 529	
■ 2605SA1	\$ 425	4.5 x 10 ⁻⁶
2714A	\$ 665	
Pd	\$427,000	7.0×10^{-7}

 MetGlass requires 100 x surface area to achieve comparable throughput

FY08 Plans

Commercially available BMG testing

- Test Met Glass materials
 - Moderate temperatures 300-400°C
 - Cycle temperature with H₂ pressure
 - Causes failure in Pd based materials
- Desirable properties
 - High permeation reported
 - $-1.13 \times 10^{-8} \text{ mol/m/s/Pa}^{1/2}$
 - High elastic modulus
 - Good H₂ degradation resistance

FY08 Plans

- Pd coating on base materials
 - Inexpensive material
 - Surface activated
 - Contamination resistant
 - Acceptable mechanical properties
 - Not as susceptible to coating defects as Pd coated ceramics
 - Modifications in local flux not unmitigated flow of contaminants

Summary

- SRNL is developing Pd free dense metallic membranes
- SRNL data indicate permeation rates and fluxes at similar orders of magnitude to Pd membranes
- Continued work is needed to bring materials, designs, and reactors to fruition

